Thursday, 3 August 2017

First Experiments using Grasshopper for Rhino

Grasshopper for Rhino – visual programming language/environment
 
pappusCh006
This is a blog post of notes made whilst using Grasshopper for the first time.
Circles and Triangles
Above: Solving for x²+y² = r² . Nodes used: I created two number sliders for variables - (Radius & Adjacent side), along with an expression evaluate node, square root node and vector node for XYZ.
Above: I created a Theta variable and plugged it into the Cosine(sideX) and Sine(sideY) functions, as degrees, and then into a Vector XYZ node. Math revision - SohCahToa
Above: Cos and Sin multiplied by radius.
Above: I created a variable for the radius of pivot circle and multiplied it *2 to find the center point distance of the orbiting circle. I input the arc variable as radians - rad(x).  
Note: Input for expressions = x
Above: I added a 2nd circle with the expression Acos(1/2) and added the Arc variable to it. Note that the corresponding angle is 60° .

img_0577-11.png
Unit Circle reference image above from: Inverse Trigonometric/ArcCos.

I added more circles.
rotateArchCircles04b 
Above: By shift dragging connections we can connect multiple links and post-it note style lists help visualize inputs/outputs. We could also use the merge node.

Function Curves 
Construct Domain node (DOM) - Start Value (-10) End Value (10) (= -10 to 10) 
Range Node - Give domain (-10 to 10) and steps (creates even spacing for steps within the domain - for example 10 will give a list of  steps each at 1/10th the domain).

graphsCreate2 
Interesting use of expressions for curves - see this article. I input a variety of variables, as number sliders, to create these pretty patterns.

interestingFunction02
Unit circle
2 π = 360 degrees. 1 π = 180 degrees. I created two expressions, (cos(x* π) and sin(x* π), as vectors x and y to simulate the unit circle. The range node automatically generates a 10 number list within a domain (D). When we set the domain to 2 (2 π) we get a complete rotation of our unit circle. It works the same way with a node tree instead of an expression.
unitCircExpress 
unitCircle 
unitCircNodes

Pappus Chain 
First I set up a simple relationship between three circles. As the radius of one circle increases the other decreases respectively. The magnitude of each  vector also increases or decreases to offset the change in radius . All three circles remain tangent.
papuisRing03c 
03_papuisRing03 
Next I wrote an expression to invert the top circle and tested it with some tangent lines.
papuisRing04 
03_papuisRing04
After a little bit of reading I found a number of ways to place the chain of circles. The most direct way is to calculate a three point circle from intersection points.

By extruding a number of tangent lines I was able to extract the necessary points using the curve|curve tool. Split nodes, set to integer 1, were needed to split the list generated when more then one intersection occurred.
papusCain02 
pappusChainIntersections 
03_papuisRing01 
Circle number 2 added. Interesting but not very practical.
papChainN2
With one circle created there is enough information to generate an ellipse. Math Revision - x²/a² + y²/b² =1
papsCh008
More circles added.
pappusCh006

"Series" nodes iterate versions of the top circle with 2*radius for steps. Lines from each circles center point intersect with the ellipse.

papusCain03 
There are a bunch of interesting articles about the Pappus Chain. It would be a lot of fun to dive in more deeply and explore the mathematics properly. It's a very interesting subject. See links...
Reuleaux Skyscraper
It seems that everyone who uses Grasshopper for Rhino builds a skyscraper first. So why not. I'll try a simple mathematical shape - A Reuleaux Triangle. It's an interesting enough shape.

"Rotation of a Reuleaux triangle within a square, showing also the curve traced by the center of the triangle"
Rotation_of_Reuleaux_triangle
See Wikipedia entry
A Reuleaux Triangle is a shape formed from the intersection of three circular disks, each having its center on the boundary of the other two.reuleaux_circle01c
Above:  Before and after trim using region difference nodes to extract the reuleax triangle shape.

Twisting Node tree tests

Series node with inputs to control the count (number of levels), the rotation of levels (in degrees), and the step size (size between levels)
.Untitled
More control added with rotation variables for rotating the the start and end of the building.
Untitled2
After a little more reading, and watching some youtube tutorials, I created my first grasshopper building. Not very interesting but it doesn't have to be. Its just for learning.
reuleaux_circle01D2
The node tree can be visualized with a param Viewer node which can display the tree visually - see node tree image.SkyScraperNodeTree
Grasshopper creator, David Rutton, has a video about data trees here.
datatree
Nodes of note for data manipulation/deconstruction:
 To be continued...

No comments:

Post a Comment